Contingut
Imatges
Carregar la teva Imatge
DSS Images Other Images
Articles Relacionats
Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti Context. The formation and evolution of the Galactic bulge and itsrelationship with the other Galactic populations is still poorlyunderstood. Aims: To establish the chemical differences andsimilarities between the bulge and other stellar populations, weperformed an elemental abundance analysis of ?- (O, Mg, Si, Ca,and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulgeas well as of local thin disk, thick disk and halo giants. Methods: We use high-resolution optical spectra of 25 bulge giants inBaade's window and 55 comparison giants (4 halo, 29 thin disk and 22thick disk giants) in the solar neighborhood. All stars have similarstellar parameters but cover a broad range in metallicity (-1.5 <[Fe/H] < +0.5). A standard 1D local thermodynamic equilibriumanalysis using both Kurucz and MARCS models yielded the abundances of O,Na, Mg, Al, Si, Ca, Ti and Fe. Our homogeneous and differential analysisof the Galactic stellar populations ensured that systematic errors wereminimized. Results: We confirm the well-established differencesfor [?/Fe] at a given metallicity between the local thin and thickdisks. For all the elements investigated, we find no chemicaldistinction between the bulge and the local thick disk, in agreementwith our previous study of C, N and O but in contrast to other groupsrelying on literature values for nearby disk dwarf stars. For -1.5 <[Fe/H] < -0.3 exactly the same trend is followed by both the bulgeand thick disk stars, with a star-to-star scatter of only 0.03 dex.Furthermore, both populations share the location of the knee in the[?/Fe] vs. [Fe/H] diagram. It still remains to be confirmed thatthe local thick disk extends to super-solar metallicities as is the casefor the bulge. These are the most stringent constraints to date on thechemical similarity of these stellar populations. Conclusions:Our findings suggest that the bulge and local thick disk starsexperienced similar formation timescales, star formation rates andinitial mass functions, confirming thus the main outcomes of ourprevious homogeneous analysis of [O/Fe] from infrared spectra for nearlythe same sample. The identical ?-enhancements of thick disk andbulge stars may reflect a rapid chemical evolution taking place beforethe bulge and thick disk structures we see today were formed, or it mayreflect Galactic orbital migration of inner disk/bulge stars resultingin stars in the solar neighborhood with thick-disk kinematics.Tables 8-15 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A35
| Chemical similarities between Galactic bulge and local thick disk red giant stars Context: The evolution of the Milky Way bulge and its relationship withthe other Galactic populations is still poorly understood. The bulge hasbeen suggested to be either a merger-driven classical bulge or theproduct of a dynamical instability of the inner disk. Aims: To probethe star formation history, the initial mass function and stellarnucleosynthesis of the bulge, we performed an elemental abundanceanalysis of bulge red giant stars. We also completed an identical studyof local thin disk, thick disk and halo giants to establish the chemicaldifferences and similarities between the various populations. Methods:High-resolution infrared spectra of 19 bulge giants and 49 comparisongiants in the solar neighborhood were acquired with Gemini/Phoenix. Allstars have similar stellar parameters but cover a broad range inmetallicity. A standard 1D local thermodynamic equilibrium analysisyielded the abundances of C, N, O and Fe. A homogeneous and differentialanalysis of the bulge, halo, thin disk and thick disk stars ensured thatsystematic errors were minimized. Results: We confirm thewell-established differences for [O/Fe] (at a given metallicity) betweenthe local thin and thick disks. For the elements investigated, we findno chemical distinction between the bulge and the local thick disk,which is in contrast to previous studies relying on literature valuesfor disk dwarf stars in the solar neighborhood. Conclusions: Ourfindings suggest that the bulge and local thick disk experiencedsimilar, but not necessarily shared, chemical evolution histories. Weargue that their formation timescales, star formation rates and initialmass functions were similar.
| Strömgren Photometry of Galactic Globular Clusters. I. New Calibrations of the Metallicity Index We present a new calibration of the Strömgren metallicity indexm1 using red giant (RG) stars in four globular clusters (GCs:M92, M13, NGC 1851, 47 Tuc) with metallicity ranging from -2.2 to -0.7,marginally affected by reddening [E(B-V)<=0.04] and with accurate(u,v,b,y) photometry. The main difference between the newmetallicity-index-color (MIC) relations and similar relations availablein the literature is that we have adopted the u-y and v-y colors insteadof b-y. These colors present a stronger sensitivity to effectivetemperature, and the MIC relations show a linear slope. The differencebetween photometric estimates and spectroscopic measurements for RGs inM71, NGC 288, NGC 362, NGC 6397, and NGC 6752 is 0.04+/-0.03 dex(σ=0.11 dex). We also apply the new MIC relations to 85 field RGswith metallicity ranging from -2.4 to -0.5 and accurate reddeningestimates. We find that the difference between photometric estimates andspectroscopic measurements is -0.14+/-0.01 dex (σ=0.17 dex). Wealso provide two sets of MIC relations based on evolutionary models thathave been transformed into the observational plane by adopting eithersemiempirical or theoretical color-temperature relations. We apply thesemiempirical relations to the nine GCs and find that the differencebetween photometric and spectroscopic metallicities is 0.04+/-0.03 dex(σ=0.10 dex). A similar agreement is found for the sample of fieldRGs, with a difference of -0.09+/-0.03 dex (with σ=0.19 dex). Thedifference between metallicity estimates based on theoretical relationsand spectroscopic measurements is -0.11+/-0.03 dex (σ=0.14 dex)for the nine GCs and -0.24+/-0.03 dex (σ=0.15 dex) for the fieldRGs. Current evidence indicates that new MIC relations providemetallicities with an intrinsic accuracy better than 0.2 dex.Based in part on observations collected with the 1.54 m Danish Telescopeoperated at ESO (La Silla, Chile) and with the Nordic Optical Telescope(NOT) operated at La Palma (Spain).
| Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.
| Mapping the Galactic Halo. VI. Spectroscopic Measures of Luminosity and Metallicity We present our calibration of spectroscopic measures of luminosity andmetallicity for halo giant candidates and give metallicities anddistances for our first sample of spectroscopically confirmed giants.These giants have distances ranging from 15 to 83 kpc. As surveys reachfarther into the Galaxy's halo with K giant samples, identification ofgiants becomes more difficult. This is because the numbers of foregroundhalo K dwarfs rise for V magnitudes of 19-20, typical for halo giants at~100 kpc. Our photometric survey uses the strength of the Mg b/H featurenear 5170 Å to weed K dwarfs out of the disk and thick disk, butwe need spectroscopic measures of the strength of the Ca II K, Ca Iλ4227, and Mg b/H features to distinguish between the verymetal-poor dwarfs and halo giants. Using a full error analysis of ourspectroscopic measures, we show why a signal-to-noise ratio of ~15pixel-1 at Ca I λ4227 and ~10 at Ca II K is needed forreliable luminosity discrimination. We use the Ca II K and Mg b featuresto measure metallicity in our halo giants, with typical errors (randomplus systematic) of 0.3 dex for [Fe/H] values from -0.8 to -3.0.
| Three-dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks We explore the application of artificial neural networks (ANNs) for theestimation of atmospheric parameters (Teff, logg, and [Fe/H])for Galactic F- and G-type stars. The ANNs are fed withmedium-resolution (Δλ~1-2 Å) non-flux-calibratedspectroscopic observations. From a sample of 279 stars with previoushigh-resolution determinations of metallicity and a set of (external)estimates of temperature and surface gravity, our ANNs are able topredict Teff with an accuracy ofσ(Teff)=135-150 K over the range4250<=Teff<=6500 K, logg with an accuracy ofσ(logg)=0.25-0.30 dex over the range 1.0<=logg<=5.0 dex, and[Fe/H] with an accuracy σ([Fe/H])=0.15-0.20 dex over the range-4.0<=[Fe/H]<=0.3. Such accuracies are competitive with theresults obtained by fine analysis of high-resolution spectra. It isnoteworthy that the ANNs are able to obtain these results withoutconsideration of photometric information for these stars. We have alsoexplored the impact of the signal-to-noise ratio (S/N) on the behaviorof ANNs and conclude that, when analyzed with ANNs trained on spectra ofcommensurate S/N, it is possible to extract physical parameter estimatesof similar accuracy with stellar spectra having S/N as low as 13. Takentogether, these results indicate that the ANN approach should be ofprimary importance for use in present and future large-scalespectroscopic surveys.
| Catalogue of [Fe/H] determinations for FGK stars: 2001 edition The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.
| Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.
| Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars We present a detailed analysis of the space motions of 1203solar-neighborhood stars with metal abundances [Fe/H]<=-0.6, on thebasis of a catalog, of metal-poor stars selected without kinematic biasrecently revised and supplemented by Beers et al. This sample, havingavailable proper motions, radial velocities, and distance estimates forstars with a wide range of metal abundances, is by far the largest suchcatalog to be assembled to date. We show that the stars in our samplewith [Fe/H]<=-2.2, which likely represent a ``pure'' halo component,are characterized by a radially elongated velocity ellipsoid(σU,σV,σW)=(141+/-11,106+/-9, 94+/-8) km s-1 and small prograde rotation=30 to 50 km s-1, consistent withprevious analysis of this sample by Beers and Sommer-Larsen based onradial velocity information alone. In contrast to the previous analysis,we find a decrease in with increasingdistance from the Galactic plane for stars that are likely to be membersof the halo population(Δ/Δ|Z|=-52+/-6 km s-1kpc-1), which may represent the signature of a dissipativelyformed flattened inner halo. Unlike essentially all previouskinematically selected catalogs, the metal-poor stars in our sampleexhibit a diverse distribution of orbital eccentricities, e, with noapparent correlation between [Fe/H] and e. This demonstrates, clearlyand convincingly, that the evidence offered in 1962 by Eggen,Lynden-Bell, & Sandage for a rapid collapse of the Galaxy, anapparent correlation between the orbital eccentricity of halo stars withmetallicity, is basically the result of their proper-motion selectionbias. However, even in our nonkinematically selected sample, we haveidentified a small concentration of high-e stars at [Fe/H]~-1.7, whichmay originate, in part, from infalling gas during the early formation ofthe Galaxy. We find no evidence for an additional thick disk componentfor stellar abundances [Fe/H]<=-2.2. The kinematics of theintermediate-abundance stars close to the Galactic plane are, in part,affected by the presence of a rapidly rotating thick disk component with ~=200 km s-1 (with a verticalvelocity gradient on the order ofΔ/Δ|Z|=-30+/-3 km s-1kpc-1) and velocity ellipsoid (σU,σV, σW)=(46+/-4, 50+/-4, 35+/-3) kms-1. The fraction of low-metallicity stars in the solarneighborhood that are members of the thick disk population is estimatedas ~10% for -2.2<[Fe/H]<=-1.7 and ~30% for -1.7<[Fe/H]<=-1.We obtain an estimate of the radial scale length of the metal-weak thickdisk of 4.5+/-0.6 kpc. We also analyze the global kinematics of thestars constituting the halo component of the Galaxy. The outer part ofthe halo, which we take to be represented by local stars on orbitsreaching more than 5 kpc from the Galactic plane, exhibits no systematicrotation. In particular, we show that previous suggestions of thepresence of a ``counter-rotating high halo'' are not supported by ouranalysis. The density distribution of the outer halo is nearly sphericaland exhibits a power-law profile that is accurately described asρ~R-3.55+/-0.13. The inner part of the halo ischaracterized by a prograde rotation and a highly flattened densitydistribution. We find no distinct boundary between the inner and outerhalo. We confirm the clumping in angular-momentum phase space of a smallnumber of local metal-poor stars noted in 1999 by Helmi et al. We alsoidentify an additional elongated feature in angular-momentum phase spaceextending from the clump to regions with high azimuthal rotation. Thenumber of members in the detected clump is not significantly increasedfrom that reported by Helmi et al., even though the total number of thesample stars we consider is almost triple that of the previousinvestigation. We conclude that the fraction of halo stars that may havearisen from the precursor object of this clump may be smaller than 10%of the present Galactic halo, as previously suggested. The implicationsof our results for the formation of the Galaxy are discussed, inparticular in the context of the currently favored cold dark mattertheory of hierarchical galaxy formation.
| Revised Strömgren metallicity calibration for red giants A new calibration of the Strömgren (b-y),m_1 diagram in terms ofiron abundance of red giants is presented. This calibration is based ona homogeneous sample of giants in the globular clusters omega Centauri,M 22, and M 55 as well as field giants from the list of Anthony-Twarog& Twarog (\cite{anth98}). Towards high metallicities, the newcalibration is connected to a previous calibration by Grebel &Richtler (\cite{greb92}), which was unsatisfactory for iron abudanceslower than -1.0 dex. The revised calibration is valid for CN-weak/normalred giants in the abundance range of -2.0 <[Fe/H]< 0.0 dex, and acolor range of 0.5 < (b-y) < 1.1 mag. As shown for red giants inomega Centauri, CN-weak stars with Strömgren metallicities higherthan -1.0 dex cannot be distinguished in the (b-y),m_1 diagram fromstars with lower iron abundances but higher CN band strengths. Based ondata collected at the European Southern Observatory, La Silla, Chile
| Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.
| Ca II H and K Photometry on the UVBY System. III. The Metallicity Calibration for the Red Giants New photometry on the uvby Ca system is presented for over 300 stars.When combined with previous data, the sample is used to calibrate themetallicity dependence of the hk index for cooler, evolved stars. Themetallicity scale is based upon the standardized merger of spectroscopicabundances from 38 studies since 1983, providing an overlap of 122evolved stars with the photometric catalog. The hk index producesreliable abundances for stars in the [Fe/H] range from -0.8 to -3.4,losing sensitivity among cooler stars due to saturation effects athigher [Fe/H], as expected.
| A catalogue of [Fe/H] determinations: 1996 edition A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Comments on the DDO Calibration and the Demise of the Metal-Poor Disk Abstract image available at:http://adsabs.harvard.edu/abs/1996AJ....111..220T
| The Demise of the Metal Poor Disk?: Spectroscopic Iron Abundances Abstract image available at:http://adsabs.harvard.edu/abs/1995AJ....109.2068R
| Kinematics of metal-poor stars in the galaxy We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.
| A revised DDO abundance calibration for population I red giants Several arguments that justify establishing a revised abundancecalibration for DDO photometry of population I red giants are presented.The components of the blanketing vector in the DDO C(45-48) vs C(42-45)diagram are determined for late-type dwarfs and giants. We haveredefined the DDO cyanogen anomaly and calibrated it againstmetallicity. The sample of field giants now available with abundancesderived from high dispersion spectroscopy is substantially larger thanpreviously available, leading to a more accurate abundance calibration.Iso-abundance lines in the C(41-42) vs C(42-45) diagram have beendetermined for population IG and K giants and an iterative method forderiving abundances of these stars is described. We show that the newDDO abundances are in very good agreement with those derived from highdispersion spectroscopy. The new method improves by about 0.1 dex theDDO abundances derived for early G and/or late K giants, with respect tothe delta(CN) method of Janes (1975).
| Population studies. II - Kinematics as a function of abundance and galactocentric position for (Fe/H) of -0.6 or less A catalog is presented of some 1200 Galactic objects which have radialvelocities and (Fe/H) abundances of -0.6 or less. These data areanalyzed to yield information on the kinematic properties of the olderpopulations of the Galaxy and on the interdependence between kinematicsand abundance. It is found that the kinematics of the availablekinematically selected stars differ from those of the nonkinematicallyselected objects. No evidence is found for any significant difference inthe kinematic properties of the various halo subgroups, nor for anydependence of kinematics on abundance. While the rotation of the halo issmall at about 37 km/s for (Fe/H) of -1.2 or less, it rises quickly forhigher abundances to a value of about 160 km/s at (Fe/H) = 0.6. Objectsin the abundance range -0.9 to -0.6 appear to belong predominantly to apopulation possessing the kinematic characteristics of a thick disk. Theimplications of these findings for the suggestion that globular clustersbelong to the same population as the noncluster objects, for the originof the thick disk, and for the mass of the Galaxy are discussed.
| Population studies. I - The Bidelman-MacConnell 'weak-metal' stars BRVI and DDO photometry are presented for 309 Bidelman-MacConnell'weak-metal' stars. Radial velocities are calculated for most of thestars having Fe/H abundances of no more than -0.8. The photometricobservations were carried out using the 0.6-meter and 1.0-metertelescopes of the Siding Spring Observatory. Photometric taxonomy wasused to classify the stars as dwarfs, giants, red-horizontal branchstars, and ultraviolet-bright stars, respectively. It is found that 35percent of the stars are giants; 50 percent are dwarfs; and 5 percentbelong to the red-horizontal branch group. The role of selection effectsin investigations of the formation of the Galaxy is discussed on thebasis of the photometric observations and the observational constraintsproposed by Eggen et al. (1962).
| Southern metal-poor stars - UBVRI photometry Considering the study of subdwarf kinematics and metallicities by Eggen,Lynden-Bell, and Sandage (1962), UBVRI photometry and normalizedultraviolet excesses are presented for 178 metal-poor stars, 144 ofwhich are contained in the kinematically unbiased list of Bidelman andMacConnell (1973). The Lowell 0.6 m telescope at Cerro Tololo was used,equipped with a single-channel photometer and a Ga-As photomultiplier.The final magnitudes and colors, number of observations, value ofdelta(U-B)0.6 (if B-V lies between 0.35 and 0.90), B and M class, andpublished spectral types for these stars are presented; severalextremely metal-poor stars are evident. In addition, sixteen nearbyvisual companions of the stars were measured, and their magnitudes andcolors are given.
|
Enviar un nou article
Enllaços Relacionats
- - No s'ha trobat enllaços -
Enviar un nou enllaç
Membre dels grups següents:
|
Dades d'Observació i Astrometria
Constel·lació: | Libra |
Ascensió Recta: | 14h35m46.82s |
Declinació: | -11°24'12.2" |
Magnitud Aparent: | 10.066 |
Moviment propi RA: | -8.2 |
Moviment propi Dec: | -9.5 |
B-T magnitude: | 11.147 |
V-T magnitude: | 10.156 |
Catàlegs i designacions:
|