Contingut
Imatges
Carregar la teva Imatge
DSS Images Other Images
Articles Relacionats
Nearby Debris Disk Systems with High Fractional Luminosity Reconsidered By searching the IRAS and ISO databases, we compiled a list of 60 debrisdisks that exhibit the highest fractional luminosity values(fd>10-4) in the vicinity of the Sun (d<120pc). Eleven out of these 60 systems are new discoveries. Special carewas taken to exclude bogus disks from the sample. We computed thefractional luminosity values using available IRAS, ISO, and Spitzer dataand analyzed the Galactic space velocities of the objects. The resultsrevealed that stars with disks of high fractional luminosity oftenbelong to young stellar kinematic groups, providing an opportunity toobtain improved age estimates for these systems. We found thatpractically all disks with fd>5×10-4 areyounger than 100 Myr. The distribution of the disks in the fractionalluminosity versus age diagram indicates that (1) the number of oldsystems with high fd is lower than was claimed before, (2)there exist many relatively young disks of moderate fractionalluminosity, and (3) comparing the observations with a currenttheoretical model of debris disk evolution, a general good agreementcould be found.
| Braking the Gas in the β Pictoris Disk The star β Pictoris hosts the best studied circumstellar disk todate. Nonetheless, a long-standing puzzle has been around since thedetection of metallic gas in the disk: radiation pressure from the starshould blow the gas away, yet the observed motion is consistent withKeplerian rotation. In this work we search for braking mechanisms thatcan resolve this discrepancy. We find that all species affected byradiation force are largely ionized and dynamically coupled into asingle fluid by Coulomb collisions, reducing the radiation force onspecies feeling the strongest acceleration. For a gas of solarcomposition, the effective radiation force still exceeds gravity, whilea gas of enhanced carbon abundance could be self-braking. We alsoexplore two other braking agents: collisions with dust grains andneutral gas. Grains surrounding β Pic are photoelectrically chargedto a positive electrostatic potential. If a significant fraction of thegrains are carbonaceous (10% in the midplane and larger at higheraltitudes), ions can be slowed down to satisfy the observed velocityconstraints. For neutral gas to brake the ion fluid, we find a minimumrequired mass ~0.03 M⊕, consistent with observed upperlimits on the hydrogen column density and substantially reduced relativeto previous estimates. Our results favor a scenario in which metallicgas is generated by grain evaporation in the disk, perhaps duringgrain-grain collisions. We exclude a primordial origin for the gas butcannot rule out its production by falling evaporating bodies near thestar.
| First Scattered Light Images of Debris Disks around HD 53143 and HD 139664 We present the first scattered light images of debris disks around a Kstar (HD 53143) and an F star (HD 139664) using the coronagraphic modeof the Advanced Camera for Surveys (ACS) on board the Hubble SpaceTelescope (HST). With ages of 0.3-1 Gyr, these are among the oldestoptically detected debris disks. HD 53143, viewed ~45° from edge-on,does not show radial variation in disk structure and has a width >55AU. HD 139664 is seen close to edge-on and has a beltlike morphologywith a dust peak 83 AU from the star and a distinct outer boundary at109 AU. We discuss evidence for significant diversity in the radialarchitecture of debris disks that appears unconnected to stellarspectral type or age. HD 139664 and possibly the solar system belong ina category of narrow belts 20-30 AU wide. HD 53143 represents a class ofwide-disk architecture with a characteristic width >50 AU.
| Hubble Space Telescope ACS Multiband Coronagraphic Imaging of the Debris Disk around β Pictoris We present F435W (B), F606W (broad V), and F814W (broad I) coronagraphicimages of the debris disk around β Pictoris obtained with theHubble Space Telescope's Advanced Camera for Surveys. These imagesprovide the most photometrically accurate and morphologically detailedviews of the disk between 30 and 300 AU from the star ever recorded inscattered light. We confirm that the previously reported warp in theinner disk is a distinct secondary disk inclined by ~5° from themain disk. The projected spine of the secondary disk coincides with theisophotal inflections, or ``butterfly asymmetry,'' previously seen atlarge distances from the star. We also confirm that the opposingextensions of the main disk have different position angles, but we findthat this ``wing-tilt asymmetry'' is centered on the star rather thanoffset from it, as previously reported. The main disk's northeastextension is linear from 80 to 250 AU, but the southwest extension isdistinctly bowed with an amplitude of ~1 AU over the same region. Bothextensions of the secondary disk appear linear, but not collinear, from80 to 150 AU. Within ~120 AU of the star, the main disk is ~50% thinnerthan previously reported. The surface brightness profiles along thespine of the main disk are fitted with four distinct radial power lawsbetween 40 and 250 AU, while those of the secondary disk between 80 and150 AU are fitted with single power laws. These discrepancies suggestthat the two disks have different grain compositions or sizedistributions. The F606W/F435W and F814W/F435W flux ratios of thecomposite disk are nonuniform and asymmetric about both projected axesof the disk. The disk's northwest region appears 20%-30% redder than itssoutheast region, which is inconsistent with the notion that forwardscattering from the nearer northwest side of the disk should diminishwith increasing wavelength. Within ~120 AU, themF435W-mF606W andmF435W-mF814W colors along the spine of the maindisk are ~10% and ~20% redder, respectively, than those of β Pic.These colors increasingly redden beyond ~120 AU, becoming 25% and 40%redder, respectively, than the star at 250 AU. These measurementsoverrule previous determinations that the disk is composed of neutrallyscattering grains. The change in color gradient at ~120 AU nearlycoincides with the prominent inflection in the surface brightnessprofile at ~115 AU and the expected water-ice sublimation boundary. Wecompare the observed red colors within ~120 AU with the simulated colorsof nonicy grains having a radial number density ~r-3 anddifferent compositions, porosities, and minimum grain sizes. Theobserved colors are consistent with those of compact or moderatelyporous grains of astronomical silicate and/or graphite with sizes>~0.15-0.20 μm, but the colors are inconsistent with the bluecolors expected from grains with porosities >~90%. The increasinglyred colors beyond the ice sublimation zone may indicate the condensationof icy mantles on the refractory grains, or they may reflect anincreasing minimum grain size caused by the cessation of cometaryactivity.Based on guaranteed observing time awarded by the National Aeronauticsand Space Administration (NASA) to the ACS Investigation Definition Team(HST program 9987).
| Chiaroscuro: from pericenter glow to apocenter enhancement illuminating the secular structure of dusty planetary systems. Not Available
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| An 850 μm Survey for Dust around Solar-Mass Stars We present the results of an 850 μm JCMT/SCUBA survey for dust around13 nearby solar-mass stars. The dust mass sensitivity ranged from5×10-3 to 0.16 M⊕. Three sources weredetected in the survey, one of which (HD 107146) has been previouslyreported. One of the other two submillimeter sources, HD 104860, was notdetected by IRAS and is surrounded by a cold, massive dust disk with adust temperature and mass of Tdust=33 K andMdust=0.16 M⊕, respectively. The thirdsource, HD 8907, was detected by IRAS and ISO at 60-87 μm and has adust temperature and mass of Tdust=48 K andMdust=0.036 M⊕, respectively. We find thatthe deduced masses and radii of the dust disks in our sample are roughlyconsistent with models for the collisional evolution of planetesimaldisks with embedded planets. We also searched for residual gas in two ofthe three systems with detected submillimeter excesses and place limitson the mass of gas residing in these systems. When the propertiesmeasured for the detected excess sources are combined with the largerpopulation of submillimeter excess sources from the literature, we findstrong evidence that the mass in small grains declines significantly ona ~200 Myr timescale, approximately inversely with age. However, we alsofind that the characteristic dust radii of the population, obtained fromthe dust temperature of the excess and assuming blackbody grains, isuncorrelated with age. This is in contrast to self-stirred collisionalmodels for debris disk evolution, which predict a trend of radiusincreasing with age tage~R3d. The lackof agreement suggests that processes beyond self-stirring, such as giantplanet formation, play a role in the evolutionary histories ofplanetesimal disks.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Evolution of Cold Circumstellar Dust around Solar-type Stars We present submillimeter (Caltech Submillimeter Observatory 350 μm)and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, OwensValley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-typestars from the Formation and Evolution of Planetary Systems SpitzerLegacy program that have masses between ~0.5 and 2.0 Msolarand ages from ~3 Myr to 3 Gyr. Continuum emission was detected towardfour stars with a signal-to-noise ratio>=3: the classical T Tauristars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and thedebris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RXJ1852.3-3700 are located in projection near the R CrA molecular cloud,with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup ofthe Scorpius-Centaurus OB association (Mamajek et al.). The continuumemission toward these three sources is unresolved at the 24" SESTresolution and likely originates from circumstellar accretion disks,each with estimated dust masses of ~5×10-5Msolar. Analysis of the visibility data toward HD 107146(age~80-200 Myr) indicates that the 3 mm continuum emission is centeredon the star within the astrometric uncertainties and resolved with aGaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or185AU×120 AU. The results from our continuum survey are combinedwith published observations to quantify the evolution of dust mass withtime by comparing the mass distributions for samples with differentstellar ages. The frequency distribution of circumstellar dust massesaround solar-type stars in the Taurus molecular cloud (age~2 Myr) isdistinguished from that around 3-10 Myr and 10-30 Myr old stars at asignificance level of ~1.5 and ~3 σ, respectively. These resultssuggest a decrease in the mass of dust contained in small dust grainsand/or changes in the grain properties by stellar ages of 10-30 Myr,consistent with previous conclusions. Further observations are needed todetermine if the evolution in the amount of cold dust occurs on evenshorter timescales.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| A Resolved Debris Disk around the G2 V Star HD 107146 We present resolved scattered-light images of the debris disk around HD107146, a G2 star 28.5 pc from the Sun. This is the first debris disk tobe resolved in scattered light around a solar-type star. We observed itwith the Hubble Space Telescope/Advanced Camera for Surveys coronagraph,using a 1.8" occulting spot and the F606W (broad V) and F814W (broad I)filters. Within 2" from the star, the image is dominated by point-spreadfunction subtraction residuals. Outside this limit, the disk looksfeatureless, except for a northeast-southwest brightness asymmetry thatwe attribute to forward scattering. The disk has scattered-lightfractional luminosities of(Lsca/L*)F606W=(6.8+/-0.8)×10-5and(Lsca/L*)F814W=(10+/-1)×10-5,and it is detected up to 6.5" away from the star. To map the surfacedensity of the disk, we deproject it by25deg+/-5deg, divide by the dust-scattering phase(gF606W=0.3+/-0.1, gF814W=0.2+/-0.1), and correctfor the geometric dilution of starlight. Within the errors, the surfacedensity has the same shape in each bandpass, and it appears to be abroad (85 AU) ring with most of the opacity concentrated at 130 AU. Theratio of the relative luminosity in F814W to that in F606W has theconstant value of 1.3+/-0.3, with the error dominated by uncertaintiesin the value of g in each filter. An examination of far-infrared andsubmillimeter measurements suggests the presence of small grains. Thecolors and the derived values of g are consistent with the presence ofdust particles smaller than the radiation pressure limit. Possiblescenarios that may explain the shape of the surface density profile arethe creation of a small planet or the scattering and circularization ofa large one.
| On Ca II Emission as an Indicator of the Age of Young Stars Chromospheric emission in the Ca II H and K lines has often been used asan age diagnostic for solar mass stars. For 20 such stars with ages lessthan a few hundred megayears, we compare Ca II ages derived by Wright etal. with ages we derive based on a combination of lithium abundance,X-ray activity, and Galactic space motion. Typically, the Ca II ages arenoticeably older than the lithium/X-ray ages, suggesting that arecalibration of the Ca II ages may be necessary.
| Detection of Cool Dust around the G2 V Star HD 107146 We report the detection of dust emission at submillimeter wavelengthsfrom HD 107146, a G2 V star with an age estimated to lie between 80 and200 Myr. The emission is resolved at 450 μm with a size300AU×210AU. A fit to the spectral energy distribution gives adust temperature of 51 K and a dust mass of 0.10M⊕. Noexcess emission above the photosphere was detected at 18 μm, showingthat there is very little warm dust and implying the presence of a largeinner hole, at least 31 AU (~1") in radius, around the star. Theproperties of this star-disk system are compared with similarobservations of other systems. We also discuss prospects for futureobservations that may be able to determine whether the inner hole ismaintained by the dynamical effect of an unseen orbiting companion.
| Dusty Debris Disks as Signposts of Planets: Implications for Spitzer Space Telescope Submillimeter and near-infrared images of cool dusty debris disks andrings suggest the existence of unseen planets. At dusty but nonimagedstars, semimajor axes of associated planets can be estimated from thedust temperature. For some young stars these semimajor axes are greaterthan 1" as seen from Earth. Such stars are excellent targets forsensitive near-infrared imaging searches for warm planets. To probe thefull extent of the dust and hence of potential planetary orbits, Spitzerobservations should include measurements with the 160 μm filter.
| Ten Micron Observations of Nearby Young Stars We present new 10 μm photometry of 21 nearby young stars obtained atthe Palomar 5 m and at the Keck I 10 m telescopes as part of a programto search for dust in the habitable zone of young stars. Thirteen of thestars are in the F-K spectral type range (``solar analogs''), four haveB or A spectral types, and four have spectral type M. We confirmexisting IRAS 12 μm and ground-based 10 μm photometry for 10 ofthe stars and present new insight into this spectral regime for therest. Excess emission at 10 μm is not found in any of the young solaranalogs, except for a possible 2.4 σ detection in the G5 V star HD88638. The G2 V star HD 107146, which does not display a 10 μmexcess, is identified as a new Vega-like candidate, based on our 10μm photospheric detection, combined with previously unidentified 60and 100 μm IRAS excesses. Among the early-type stars, a 10 μmexcess is detected only in HD 109573A (HR 4796A), confirming priorobservations; among the M dwarfs, excesses are confirmed in AA Tau, CD-40°8434, and Hen 3-600A. A previously suggested N-band excess inthe M3 dwarf CD -33°7795 is shown to be consistent with photosphericemission. We calculate infrared to stellar bolometric luminosity ratiosfor all stars exhibiting mid-infrared excesses and infer the total massof orbiting dust in the cases of optically thin disks. For a derivedmedian photometric precision of +/-0.11 mag, we place an upper limit ofMdust~2×10-5 M⊕ on the dustmass (assuming a dust temperature of 300 K) around solar analogs notseen in excess at 10 μm. Our calculations for the nearby K1 V star HD17925 show that it may have the least massive debris disk known outsideour solar system (Mdust>~7×10-6M⊕). Our limited data confirm the expected tendency ofdecreasing fractional dust excessfd=LIR/L* with increasing stellar age.However, we argue that estimates of fd suffer from adegeneracy between the temperature and the amount of circumstellar dustMdust, and we propose a relation of Mdust as afunction of age instead.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| The Hamburg/RASS Catalogue of optical identifications. Northern high-galactic latitude ROSAT Bright Source Catalogue X-ray sources We present the Hamburg/RASS Catalogue (HRC) of optical identificationsof X-ray sources at high-galactic latitude. The HRC includes all X-raysources from the ROSAT Bright Source Catalogue (RASS-BSC) with galacticlatitude |b| >=30degr and declination delta >=0degr . In thispart of the sky covering ~ 10 000 deg2 the RASS-BSC contains5341 X-ray sources. For the optical identification we used blue Schmidtprism and direct plates taken for the northern hemisphere Hamburg QuasarSurvey (HQS) which are now available in digitized form. The limitingmagnitudes are 18.5 and 20, respectively. For 82% of the selectedRASS-BSC an identification could be given. For the rest either nocounterpart was visible in the error circle or a plausibleidentification was not possible. With ~ 42% AGN represent the largestgroup of X-ray emitters, ~ 31% have a stellar counterpart, whereasgalaxies and cluster of galaxies comprise only ~ 4% and ~ 5%,respectively. In ~ 3% of the RASS-BSC sources no object was visible onour blue direct plates within 40\arcsec around the X-ray sourceposition. The catalogue is used as a source for the selection of(nearly) complete samples of the various classes of X-ray emitters.
| Nearby young stars We present the results of an extensive all-sky survey of nearby stars ofspectral type F8 or later in a systematic search of young (zero-age mainsequence) objects. Our sample has been derived by cross-correlating theROSAT All-Sky Survey and the TYCHO catalogue, yielding a total of 754candidates distributed more or less randomly over the sky. Follow-upspectroscopy of these candidate objects has been performed on 748 ofthem. We have discovered a tight kinematic group of ten stars withextremely high lithium equivalent widths that are presumably youngerthan the Pleiades, but again distributed rather uniformly over the sky.Furthermore, about 43 per cent of our candidates have detectable levelsof lithium, thus indicating that these are relatively young objects withages not significantly above the Pleiades age.Based on observations collected at the European Southern Observatory,Chile (ESO No. 62.I-0650, 66.D-0159(A), 67.D-0236(A)).
| New periodic variables from the Hipparcos epoch photometry Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.
| The Catania Automatic Photoelectric Telescope on Mt. Etna: a systematic study of magnetically active stars A photometric monitoring of about 50 magnetically active stars, that arespread almost all over the H-R diagram, was initiated at the mountainstation of Catania Observatory on Mt. Etna (1750-m a.s.l.) in 1992 withan 80-cm robotic telescope (APT-80) built by AutoScope Co. (USA). Thissystematic survey is now approaching its 10th year anniversary. For mostof the stars, quite well defined solar-like spot maps have been derivedfrom UBV data obtained in different epochs. These data have allowed usto investigate some relevant characteristics of spot activity andvariability on stars, and to obtain clear evidence of long-term activitycycles, in the range from a few to about 10 years, on some of theobserved targets. Starspot maps are constructed by using advanced tools,such as massive parallel computing and are based on Maximum Entropy andTikhonov regularization criteria. Selected results are here presented.Our systematic observation program is still underway and a secondAPT80/2, equipped with a CCD camera, will pair the APT80/1 on the samesite. Its operation is foreseen for mid 2002.
| The ROSAT Bright Survey: II. Catalogue of all high-galactic latitude RASS sources with PSPC countrate CR > 0.2 s-1 We present a summary of an identification program of the more than 2000X-ray sources detected during the ROSAT All-Sky Survey (Voges et al.1999) at high galactic latitude, |b| > 30degr , with countrate above0.2 s-1. This program, termed the ROSAT Bright Survey RBS, isto more than 99.5% complete. A sub-sample of 931 sources with countrateabove 0.2 s-1 in the hard spectral band between 0.5 and 2.0keV is to 100% identified. The total survey area comprises 20391deg2 at a flux limit of 2.4 x 10-12 ergcm-2 s-1 in the 0.5 - 2.0 keV band. About 1500sources of the complete sample could be identified by correlating theRBS with SIMBAD and the NED. The remaining ~ 500 sources were identifiedby low-resolution optical spectroscopy and CCD imaging utilizingtelescopes at La Silla, Calar Alto, Zelenchukskaya and Mauna Kea. Apartfrom completely untouched sources, catalogued clusters and galaxieswithout published redshift as well as catalogued galaxies with unusualhigh X-ray luminosity were included in the spectroscopic identificationprogram. Details of the observations with an on-line presentation of thefinding charts and the optical spectra will be published separately.Here we summarize our identifications in a table which contains opticaland X-ray information for each source. As a result we present the mostmassive complete sample of X-ray selected AGNs with a total of 669members and a well populated X-ray selected sample of 302 clusters ofgalaxies with redshifts up to 0.70. Three fields studied by us remainwithout optical counterpart (RBS0378, RBS1223, RBS1556). While the firstis a possible X-ray transient, the two latter are isolated neutron starcandidates (Motch et al. 1999, Schwope et al. 1999).
| Kinematics and Metallicity of Stars in the Solar Region Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.
| Optical identification of EUV sources from the ROSAT Wide Field Camera all-sky survey Optical identifications for 195 EUV sources located in the ROSAT WideField Camera all-sky survey are presented. We list 69 previously unknownEUV-emitting white dwarfs, 114 active stars, 7 new magnetic cataclysmicvariables and 5 active galaxies. Several of the white dwarfs haveresolved M-type companions, while five are unresolved white dwarf/M-starpairs. Finding charts are given for the optical counterparts.
| The ROSAT Wide Field Camera all-sky survey of extreme-ultraviolet sources - II. The 2RE Source Catalogue During 1990-1991 the Wide Field Camera (WFC) on the ROSAT satelliteperformed the first all-sky survey at EUV wavelengths. The survey wasconducted in two `colours' using broad-band filters to define wavebandscovering the ranges 60-140 A and 112-200 A. It was fully imaging, witheffective spatial resolution of about 3 arcmin FWHM, and point sourcelocation accuracy of typically better than 1 arcmin. From an initialanalysis, Pounds et al. published the WFC Bright Source Catalogue (BSC)of 383 sources. In this paper we report results from reprocessing of thecomplete survey database; the resulting list of sources is the `2RE'Catalogue. It contains 479 sources, of which 387 are detected in bothsurvey wavebands, a significant advance on the BSC (80 per cent versus60 per cent). Improvements over the original BSC include: (i) betterrejection of poor aspect periods, and smaller random errors in theaspect reconstruction; (ii) improved background screening; (iii)improved methods for source detection; (iv) inclusion of atime-variability test for each source; (v) more extensive investigationof the survey sensitivity. We define the catalogue selection criteria,and present the catalogue contents in terms of tables and sky maps. Wealso discuss the sky coverage, source number-flux relations, opticalidentifications and source variability.
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Stroemgren photometry of F- and G-type stars brighter than V = 9.6. I. UVBY photometry Within the framework of a large photometric observing program, designedto investigate the Galaxy's structure and evolution, Hβ photometryis being made for about 9000 stars. As a by-product, supplementary uvbyphotometry has been made. The results are presented in a cataloguecontaining 6924 uvby observations of 6190 stars, all south ofδ=+38deg. The overall internal rms errors of one observation(transformed to the standard system) of a program star in the interval6.5
| An optical Atlas of ROSAT Wide Field Camera EUV sources The ROSAT Wide Field Camera has been detecting EUV sources since itslaunch in June 1990. A preliminary list of 384 bright sources has beensupplied by the Wide Field Camera team to the EUVE Guest ObserverCenter, and to the astronomical community. We have extracted 5.4 x 5.4arcmin images of all 384 WFC sources from the Space Telescope ScienceInstitute digitized sky archives. These images are presented asmosaicked finder charts for observers trying either to identify WFCsources or to characterize known sources.
| The ROSAT Wide Field Camera all-sky survey of extreme-ultraviolet sources. I - The Bright Source Catalogue First comprehensive results from an initial processing of the ROSAT WideField Camera all-sky survey for cosmic sources of extreme-ultravioletradiation are presented. The reduction of the survey data has yielded acatalog of 383 relatively bright EUV sources, forming the WFC BrightSource Catalogue. Details of the EUV source positions and count ratesare given, as are optical identifications where known. It is found thatthe log N-log S distributions are unusually flat for the white dwarfstars, but almost Euclidean for the nearby main-sequence late-typestars. The sky distribution of identified white dwarfs is highlynonuniform, suggesting gross variations in the opacity of theinterstellar medium within about 100 pc.
| An infrared-optical study of IRAS point sources in the Virgo region Optical identifications for 199 of the 206 IRAS point sources in a 113sq deg area centered on the Virgo cluster are made using four deepIIIa-J plates obtained with the 1.2-m UK Schmidt Telescope. Only 4percent of the E and S0 galaxies brigher than B = 16 are detected, ascompared with 44 percent of the Sc galaxies. Infrared properties of theVirgo cluster are found to be similar to those of field galaxies atsimilar redshifts. Such IRAS galaxies are typical spirals with B of lessthan about 14, infrared to optical luminosity ratios of about 1, andinfrared luminosities of about 10 to the 9th solar luminosities,properties which are independent of neutral hydrogen content for theVirgo cluster galaxies. Data suggest that the optically faint galaxieshave L(IR) of greater than 10 to the 12th solar luminosities.
|
Enviar un nou article
Enllaços Relacionats
- - No s'ha trobat enllaços -
Enviar un nou enllaç
Membre dels grups següents:
|
Dades d'Observació i Astrometria
Constel·lació: | Coma Berenices |
Ascensió Recta: | 12h19m06.50s |
Declinació: | +16°32'53.9" |
Magnitud Aparent: | 7.047 |
Distancia: | 28.514 parsecs |
Moviment propi RA: | -175.6 |
Moviment propi Dec: | -149.5 |
B-T magnitude: | 7.781 |
V-T magnitude: | 7.108 |
Catàlegs i designacions:
|