Contents
Images
Upload your image
DSS Images Other Images
Related articles
The RAdial Velocity Experiment (RAVE): Third Data Release We present the third data release of the RAdial Velocity Experiment(RAVE) which is the first milestone of the RAVE project, releasing thefull pilot survey. The catalog contains 83,072 radial velocitymeasurements for 77,461 stars in the southern celestial hemisphere, aswell as stellar parameters for 39,833 stars. This paper describes thecontent of the new release, the new processing pipeline, as well as anupdated calibration for the metallicity based upon the observation ofadditional standard stars. Spectra will be made available in a futurerelease. The data release can be accessed via the RAVE Web site.
| Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| Distance determination for RAVE stars using stellar models . II. Most likely values assuming a standard stellar evolution scenario The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of theMilky Way which already collected over 400 000 spectra of ~ 330 000different stars. We use the subsample of spectra with spectroscopicallydetermined values of stellar parameters to determine the distances tothese stars. The list currently contains 235 064 high quality spectrawhich show no peculiarities and belong to 210 872 different stars. Thenumbers will grow as the RAVE survey progresses. The public version ofthe catalog will be made available through the CDS services along withthe ongoing RAVE public data releases. The distances are determined witha method based on the work by Breddels et al. (2010, A&A, 511, A16).Here we assume that the star undergoes a standard stellar evolution andthat its spectrum shows no peculiarities. The refinements include: theuse of either of the three isochrone sets, a better account of thestellar ages and masses, use of more realistic errors of stellarparameter values, and application to a larger dataset. The deriveddistances of both dwarfs and giants match within ~ 21% to theastrometric distances of Hipparcos stars and to the distances ofobserved members of open and globular clusters. Multiple observations ofa fraction of RAVE stars show that repeatability of the deriveddistances is even better, with half of the objects showing a distancescatter of ? 11%. RAVE dwarfs are ~ 300 pc from the Sun, and giantsare at distances of 1 to 2 kpc, and up to 10 kpc. This places the RAVEdataset between the more local Geneva-Copenhagen survey and the moredistant and fainter SDSS sample. As such it is ideal to address some ofthe fundamental questions of Galactic structure and evolution in thepre-Gaia era. Individual applications are left to separate papers, herewe show that the full 6-dimensional information on position and velocityis accurate enough to discuss the vertical structure and kinematicproperties of the thin and thick disks.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A54
| Distance determination for RAVE stars using stellar models Aims: We develop a method for deriving distances fromspectroscopic data and obtaining full 6D phase-space coordinates for theRAVE survey's second data release. Methods: We used stellarmodels combined with atmospheric properties from RAVE (effectivetemperature, surface gravity and metallicity) and (J-Ks)photometry from archival sources to derive absolute magnitudes. Incombination with apparent magnitudes, sky coordinates, proper motionsfrom a variety of sources and radial velocities from RAVE, we are ableto derive the full 6D phase-space coordinates for a large sample of RAVEstars. This method is tested with artificial data, Hipparcostrigonometric parallaxes and observations of the open cluster M 67. Results: When we applied our method to a set of 16 146 stars, wefound that 25% (4037) of the stars have relative (statistical) distanceerrors of <35%, while 50% (8073) and 75% (12 110) have relative(statistical) errors smaller than 45% and 50%, respectively. Our varioustests show that we can reliably estimate distances for main-sequencestars, but there is an indication of potential systematic problems withgiant stars owing to uncertainties in the underlying stellar models. Forthe main-sequence star sample (defined as those with log(g) > 4), 25%(1744) have relative distance errors <31%, while 50% (3488) and 75%(5231) have relative errors smaller than 36% and 42%, respectively. Ourfull dataset shows the expected decrease in the metallicity of stars asa function of distance from the Galactic plane. The known kinematicsubstructures in the U and V velocity components of nearby dwarf starsare apparent in our dataset, confirming the accuracy of our data and thereliability of our technique. We provide independent measurements of theorientation of the UV velocity ellipsoid and of the solar motion, andthey are in very good agreement with previous work. Conclusions:The distance catalogue for the RAVE second data release is available athttp://www.astro.rug.nl/~rave,and will be updated in the future to include new data releases.
| Broadband UBVRCIC Photometry of Horizontal-Branch and Metal-poor Candidates from the HK and Hamburg/ESO Surveys. I. We report broadband UBV and/or BVRCIC CCDphotometry for a total of 1857 stars in the thick-disk and halopopulations of the Galaxy. The majority of our targets were selected ascandidate field horizontal-branch or other A-type stars (FHB/A, N=576),or candidate low-metallicity stars (N=1221), from the HK and Hamburg/ESOobjective-prism surveys. Similar data for a small number of additionalstars from other samples are also reported. These data are being usedfor several purposes. In the case of the FHB/A candidates they are usedto accurately separate the lower gravity FHB stars from various highergravity A-type stars, a subsample that includes the so-called blue metalpoor stars, halo and thick-disk blue stragglers, main-sequence A-typedwarfs, and Am and Ap stars. These data are also being used to derivephotometric distance estimates to high-velocity hydrogen clouds in theGalaxy and for improved measurements of the mass of the Galaxy.Photometric data for the metal-poor candidates are being used to refineestimates of stellar metallicity for objects with availablemedium-resolution spectroscopy, to obtain distance estimates forkinematic analyses, and to establish initial estimates of effectivetemperature for analysis of high-resolution spectroscopy of the starsfor which this information now exists.
| Bright Metal-poor Stars from the Hamburg/ESO Survey. I. Selection and Follow-up Observations from 329 Fields We present a sample of 1777 bright (91.0) metal-poor([Fe/H]<-2.0) giants of 9%+/-2%, which is lower than previouslyreported. However, the frequency rises to similar (>20%) and highervalues with increasing distance from the Galactic plane. Although thenumbers of stars at low metallicity are falling rapidly at the lowestmetallicities, there is evidence that the fraction of carbon-enhancedmetal-poor stars is increasing rapidly as a function of decliningmetallicity. For ~60 objects, high-resolution data have already beenobtained; one of these, HE 1327-2326, is the new record holder for themost iron-deficient star known.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Probable new halo stars toward L = 360 deg, B = +30 deg The Stock objective-prism radial-velocity survey catalog has beensearched for probable halo giants at intermediate Galactic longitude. Atotal of 83 objects were found. The sample yielded a velocity dispersionof 98 + or - 8 km/sec and a frequency of 0.15 halo giants brighter thanm(pg) = 11.5/sq deg.
| Southern stars of high radial velocity First, it has been shown that the Stock Velocity Survey is a usefulsource of velocity information on 8-13th mag southern stars. Theparticular use has been to identify stars of very large velocity.Thackeray (1975) has tabulated those galactic objects with heliocentricradial velocities over 250 km/s; his list contains 69 objects, of which59 are stellar. The authors have found twelve more stars. Second, theslit spectra of a sample of high-velocity stars in the Stock Surveyrevealed several extremely metal-weak stars. Abundance analysis forthese objects would be worthwhile. Finally, among the high-velocityobjects are a surprising number of late B and early A stars. In mostinstances, these objects appear to be spectroscopically normal,main-sequence stars, but three are definite A + G spectrum binaries.High-velocity binaries are rare.
| Metal-Deficient Giants in the Galactic Field - Catalogue and Some Physical Parameters Not Available
| Radial velocities of faint stars from objective prism plates A simple method by which the approximate radial velocity of a star maybe obtained from objective prism plates is described in detail. Themethod has been used to derive the velocities of 41 faint stars, most ofwhich have metal-weak spectra and are shown to be high-velocity objects.It is shown that this method may be generalized so that the radialvelocities for all measurable stars on an objective prism plate can beobtained.
| A southern objective prism survey. Not Available
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Ύδρα |
Right ascension: | 12h35m50.13s |
Declination: | -31°31'11.2" |
Apparent magnitude: | 10.759 |
Proper motion RA: | 8.8 |
Proper motion Dec: | -9.2 |
B-T magnitude: | 11.742 |
V-T magnitude: | 10.841 |
Catalogs and designations:
|