Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 130233


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

Multivariate comparisons of the period-light-curve shape distributions of Cepheids in five galaxies
A number of published tests suitable for the comparison of multivariatedistributions are described. The results of a small power study, basedon realistic Cepheid log period - Fourier coefficient data, arepresented. It is found that a statistic due to Henze has good generalperformance. The tests are applied to Cepheid observations in the MilkyWay galaxy, Large Magellanic Cloud, Small Magellanic Cloud, IC 1613 andNGC 6822. The null hypothesis of equal populations is rejected for allpairs compared, except IC 1613 - NGC 6822.

Period-colour and amplitude-colour relations in classical Cepheid variables - IV. The multiphase relations
The superb phase resolution and quality of the Optical GravitationalLensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) andSmall Magellanic Cloud (SMC) Cepheids, together with existing data onGalactic Cepheids, are combined to study the period-colour (PC) andamplitude-colour (AC) relations as a function of pulsation phase. Ourresults confirm earlier work that the LMC PC relation (at mean light) ismore consistent with two lines of differing slopes, separated at aperiod of 10 d. However, our multiphase PC relations reveal much newstructure which can potentially increase our understanding of Cepheidvariables. These multiphase PC relations provide insight into why theGalactic PC relation is linear but the LMC PC relation is non-linear.This is because the LMC PC relation is shallower for short (logP < 1)and steeper for long (logP > 1) period Cepheids than thecorresponding Galactic PC relation. Both of the short- and long-periodCepheids in all three galaxies exhibit the steepest and shallowestslopes at phases around 0.75-0.85, respectively. A consequence is thatthe PC relation at phase ~ 0.8 is highly non-linear. Further, theGalactic and LMC Cepheids with logP > 1 display a flat slope in thePC plane at phases close to the maximum light. When the LMCperiod-luminosity (PL) relation is studied as a function of phase, weconfirm that it changes with the PC relation. The LMC PL relation in Vand I band near the phase of 0.8 provides compelling evidence that thisrelation is also consistent with two lines of differing slopes joined ata period close to 10 d.

Mean Angular Diameters and Angular Diameter Amplitudes of Bright Cepheids
We predict mean angular diameters and amplitudes of angular diametervariations for all monoperiodic PopulationI Cepheids brighter than=8.0 mag. The catalog is intended to aid selecting mostpromising Cepheid targets for future interferometric observations.

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Fundamental Parameters of Cepheids. V. Additional Photometry and Radial Velocity Data for Southern Cepheids
I present photometric and radial velocity data for Galactic Cepheids,most of them being in the southern hemisphere. There are 1250 Genevaseven-color photometric measurements for 62 Cepheids, the averageuncertainty per measurement is better than 0.01 mag. A total of 832velocity measurements have been obtained with the CORAVEL radialvelocity spectrograph for 46 Cepheids. The average accuracy of theradial velocity data is 0.38 km s-1. There are 33 stars withboth photometry and radial velocity data. I discuss the possiblebinarity or period change that these new data reveal. I also presentreddenings for all Cepheids with photometry. The data are availableelectronically. Based on observations obtained at the European SouthernObservatory, La Silla.

Photometry and radial velocities of cepheids and other variable stars in the Galaxy and the LMC
UBVRIc and radial velocity measurements are presented for Galactic andLMC Cepheids, and for several variables of other type. The photometrycomprises 168 objects with 1790 phases, and the speedometry 15 objectswith 97 phases.

Photoelectric Observations of Southern Cepheids in 2001
A total of 2097 photometric observations in the BVIc systemare presented for 117 Cepheids located in the southern hemisphere. Themain purpose of the photometry is to provide new epochs of maximumbrightness for studying Cepheid period changes, as well as to establishcurrent light elements for the Cepheids.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

Structural properties of s-Cepheid velocity curves Constraining the location of the omega_4 = 2omega_1 resonance
The light curves of the first overtone Pop. I Cepheids (s-Cepheids) showa discontinuity in their phi_ {21} vs. {P} diagram, near {P} = 3.2 day.This feature, commonly attributed to the 2:1 resonance between the firstand the fourth overtones (omega_4 ~ 2omega_1 ), is not reproduced by thehydrodynamical models. With the goal of reexamining the resonancehypothesis, we have obtained new CORAVEL radial velocity curves for 14overtone Cepheids. Together with 10 objects of Krzyt et al.( te{krzyt}), the combined sample covers the whole range of overtoneCepheid periods. The velocity Fourier parameters display a strongcharacteristic resonant behavior. In striking contrast to photometricones, they vary smoothly with the pulsation period and show no jump at3.2 day. The existing radiative hydrodynamical models match the velocityparameters very well. The center of the omega_4 = 2omega_1 resonance isestimated to occur at {P}r = 4.58\pm 0.04 day, i.e. at aperiod considerably longer than previously assumed (3.2 day). Weidentify two new members of the s-Cepheid group: MYPup and V440 Per. Based on observationscollected at the European Southern Observatory (La Silla, Chile) and atthe Observatoire de Haute-Provence (France)}

Photometric Parameters for Short-Period Cepheids
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....111.1313E&db_key=AST

New method to recognize s-Cepheids
A new method of delineating sinusoidal or s-Cepheids is presented. Themethos uses the values of (V) (the mean intensity), V - Bar (the averagemagnitude), and Vmean (the value of the mean magnitude).Fourier coefficient data from galactic Cepheids is used to derive theseterms in the V band and the differences between the various terms showsystematic trends with increasing period. The Cepheids can be easilygrouped into 3 divisions-short period s-Cepheids, intermediate periodCepheids (P less than 9 days), and long period Cepheids (P greater than9 days). Cepheids previously designated as s-Cepheids by others arecompared to those found using the method outlined here. The method isalso applied to Cepheids in the Small Magellanic Cloud to examine itssuitability as a pulsation mode discriminator.

The calibration of the Stromgren photometric system for A, F and early G supergiants. I - The observational data
An empirical calibration of the Stromgren uvby-beta photometric systemfor the A, F, and early G supergiants is being derived. This paperexplains the observational program and the photometric reductiontechniques used and presents a catalog of new Stromgren photometry forover 600 A, F, and G supergiants.

The separation of S-Cepheids from classical Cepheids and a new definition of the class
Fourier decomposition has been applied to a sample of 184 classical andS-Cepheids with P less than 8 d and a careful evaluation of errors inthe determination of the parameters has been made. The S-Cepheids starsare redefined by the authors as Population I Cepheids that do not followthe Hertzsprung progression, but have a progression of their own. In thephi(21)-P plane, the S- and classical Cepheids are characterized by twosequences well separated for P less than 5.5 d. In the period range Pbetween 3d and 5.5 d, two different progressions are also present in thephi(31)-P plane while a discriminating value R(21) = 0.20 can be seen inthe R(21)-P plane. The first overtone pulsation seems to be wellestablished for S-Cepheids with P less then 3.2 d; it is probable forall the stars of the redefined subclass. A discontinuity is clearlyvisible at about 3 d in the S-Cepheid sequence in the phi(21)-P plane;it is interpreted as a resonance effect. An apparent decrease in thenumber of stars is present in the classical sequence for P less than 3d.

Color Excesses on a Uniform Scale for 328 Cepheids
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJS...72..153F&db_key=AST

Detection of Cepheid variables by the Infrared Astronomical Satellite
Using the IRAS Point-Source Catalog (PSC) as a data base, midand far-IRemission near Cepheids were searched for. Of the more than 700 Cepheidvariables listed in the General Catalogue of Variable Stars, sixty-eightconfirmed detections have been made in the PSC. The vast majority ofCepheids detected are bright, nearby classical Cepheids, whose IR fluxis simply that produced by the stellar photosphere. For those Cepheidsthat show IR excesses, it is speculated that the excesses are caused bythermal emission from dust formed by mass loss. The results arediscussed in the framework of simple mass-loss models for stars withmasses comparable to Cepheid variables.

Intermediate-band and H-beta observations of short-period Cepheids
Intermediate-band and H-beta observations along with light and colorcurves for short-period Cepheids are presented. Although mainlysouthern, a few northern variables are included. Two of the variablesare briefly discussed.

Cepheids and nonvariable supergiants
Photometric parameters for Cepheids in a previous paper are adapted foruse with nonvariable supergiants of similar temperature. The closecorrelation between the abundance and luminosity parameters forclassical, short-period Cepheids (SPC) confirms the nearlydispersionless luminosity temperature relation for these variables. Theassumptions that (1) the C-type variables are transiting the Cepheidtemperature for the first time, (2) the classical SPC are mostlytransiting for the second time, and (3) the long-period Cepheids (LPC)are a mixture of stars transiting for the first to third or fourth timesare found to be consistent with the various correlations of temperatureand luminosity parameters. The nonvariable supergiants with photometricparameters similar to those for the Cepheids are found to haveluminosities consistent with their spectroscopic luminosity class. Few,if any, nonvariable supergiants have temperatures and luminositiessimilar to the LPC.

The Catalogue of Distances and Light Absorption for Cepheids
Not Available

Estimation of spectral classifications for bright southern stars with interesting Stromgren indices
This paper investigates the degree of success with which uvby photometrycan be applied to predict spectral classifications for 947 A, F, and Gstars brighter than an apparent magnitude of 8.3 and with four-colorindices indicating some kind of interesting, unusual, or peculiarspectrum. One or several possible spectral classifications are estimatedfor each star from photometry alone, double stars are distinguished, andthe estimates are compared with published classifications. The resultsshow that the framework provided by uvby photometry can be extended toinclude most G and K stars, reddened stars, peculiar stars, and certaintypes of double star.

Cepheides de Faible Amplitude
Not Available

Mitteilungen uber Veraenderliche der Bamberger Liste.
Not Available

Discovery and study of bright variable stars.
Not Available

Photometric Light-Curves of Southern BV-Stars
Not Available

Bright Southern BV-Stars
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Διαβήτης
Right ascension:14h50m30.29s
Declination:-67°29'51.5"
Apparent magnitude:7.446
Distance:294.118 parsecs
Proper motion RA:-5.6
Proper motion Dec:-3.6
B-T magnitude:8.496
V-T magnitude:7.533

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 130233
TYCHO-2 2000TYC 9019-195-1
USNO-A2.0USNO-A2 0225-21032570
HIPHIP 72583

→ Request more catalogs and designations from VizieR