Главная     Введение     Выжить во Вселенной    
Inhabited Sky
    News@Sky     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Пресса     Войти  

HD 156559


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

The local distribution of NA I interstellar gas
We present high-resolution absorption measurements (lambda/Delta lambdaapproximately 75,000) of the interstellar Na I D lines at 5890 A toward80 southern hemisphere early-type stars located in the localinterstellar medium (LISM). Combining these results with other sodiummeasurements taken from the literature, we produce galactic maps of thedistribution of neutral sodium column density for a total of 293 starsgenerally lying within approximately 250 pc of the Sun. These mapsreveal the approximate shape of the mid-plane contours of the rarefiedregion of interstellar space termed the Local Bubble. Its shape is seenas highly asymmetric, with a radius ranging from 30 to 300 pc, and withan average radius of 60 pc. Similar plots of the Galactic mid-planedistribution of sources emitting extreme ultraviolet radiation show thatthey also trace out similar contours of the Local Bubble derived from NaI absorption measurements. We conclude that the Local Bubble absorptioninterface can be represented by a hydrogen column density,NuETA = 2 x 1019 cm-2, which explainsboth the local distribution of Na I absorption and the observed galacticdistribution of extreme ultraviolet sources. The derived mid-planecontours of the Bubble generally reproduce the large-scale featurescarved out in the interstellar medium by several nearby galactic shellstructures.

A very dense H I filament within the Local Hot Bubble
We present H I observations and a distance determination frominterstellar Na I D absorption lines of the dense filament LVC 88+36-2.The H I observations reveal strong 21-cm emission lines of very lowvelocity dispersion. All of our Na I D spectra toward suitable starshave strong absorption lines coincident with the H I emission, settingan upper distance limit of (60 +/- 20) pc. Since the Local Hot Bubblehas a radius of about 100 pc in this direction, we conclude that LVC88+36-2 is located within the bubble. A shadow of the filament, found inthe diffuse soft X-ray background, can be used to analyze the locationof the soft X-ray emission.

The local interstellar medium and soft local X-ray radiation
The nature of the soft local X-ray radiation is discussed. The questionof whether the radiation originates from a local bubble, a number ofnonlocal bubbles, or the Galactic corona is examined. Attention is givento Rosat findings and to the known characteristics of the Dracomolecular cloud, the Hercules H I shell, and the Hercules field.

A search for interstellar NA I D absorption lines towards the Draco nebula.
Not Available

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Дракон
Прямое восхождение:17h14m43.82s
Склонение:+58°23'02.6"
Видимая звёздная величина:7.896
Расстояние:81.367 парсек
Собственное движение RA:-3.9
Собственное движение Dec:40.3
B-T magnitude:8.35
V-T magnitude:7.934

Каталоги и обозначения:
Собственные имена   (Edit)
HD 1989HD 156559
TYCHO-2 2000TYC 3899-1288-1
USNO-A2.0USNO-A2 1425-08727784
HIPHIP 84352

→ Запросить дополнительные каталоги и обозначения от VizieR